Monday, April 20, 2009

Understanding PROXY Server

A server, that sits between a client application, such as a Web browser, and a real server. It intercepts all requests to the real server to see if it can fulfill the requests itself. If not, it forwards the request to the real server.

Proxy servers have two main purposes:

Improve Performance: Proxy servers can dramatically improve performance for groups of users. This is because it saves the results of all requests for a certain amount of time. Consider the case where both user X and user Y access the World Wide Web through a proxy server. First user X requests a certain Web page, which we'll call Page 1. Sometime later, user Y requests the same page. Instead of forwarding the request to the Web server where Page 1 resides, which can be a time-consuming operation, the proxy server simply returns the Page 1 that it already fetched for user X. Since the proxy server is often on the same network as the user, this is a much faster operation. Real proxy servers support hundreds or thousands of users. The major online services such as America Online, MSN and Yahoo, for example, employ an array of proxy servers.

Filter Requests: Proxy servers can also be used to filter requests. For example, a company might use a proxy server to prevent its employees from accessing a specific set of Web sites.

What different types of firewalls are there?

Firewalls fall into four broad categories: packet filters, circuit level gateways, application level gateways and state-full multilayer inspection firewalls.

Packet filtering firewalls work at the network level of the OSI model, or the IP layer of TCP/IP. They are usually part of a router. A router is a device that receives packets from one network and forwards them to another network. In a packet filtering firewall each packet is compared to a set of criteria before it is forwarded. Depending on the packet and the criteria, the firewall can drop the packet, forward it or send a message to the originator. Rules can include source and destination IP address, source and destination port number and protocol used. The advantage of packet filtering firewalls is their low cost and low impact on network performance. Most routers support packet filtering. Even if other firewalls are used, implementing packet filtering at the router level affords an initial degree of security at a low network layer. This type of firewall only works at the network layer however and does not support sophisticated rule based models (see Figure 5). Network Address Translation (NAT) routers offer the advantages of packet filtering firewalls but can also hide the IP addresses of computers behind the firewall, and offer a level of circuit-based filtering.

Figure 6: Packet Filtering Firewall

clip_image001

Circuit level gateways work at the session layer of the OSI model, or the TCP layer of TCP/IP. They monitor TCP handshaking between packets to determine whether a requested session is legitimate. Information passed to remote computer through a circuit level gateway appears to have originated from the gateway. This is useful for hiding information about protected networks. Circuit level gateways are relatively inexpensive and have the advantage of hiding information about the private network they protect. On the other hand, they do not filter individual packets.

Figure 7: Circuit level Gateway

clip_image002

Application level gateways, also called proxies, are similar to circuit-level gateways except that they are application specific. They can filter packets at the application layer of the OSI model. Incoming or outgoing packets cannot access services for which there is no proxy. In plain terms, an application level gateway that is configured to be a web proxy will not allow any ftp, gopher, telnet or other traffic through. Because they examine packets at application layer, they can filter application specific commands such as http:post and get, etc. This cannot be accomplished with either packet filtering firewalls or circuit level neither of which know anything about the application level information. Application level gateways can also be used to log user activity and logins. They offer a high level of security, but have a significant impact on network performance. This is because of context switches that slow down network access dramatically. They are not transparent to end users and require manual configuration of each client computer. (See Figure 7)

Figure 8: Application level Gateway

clip_image003

State-full multilayer inspection firewalls combine the aspects of the other three types of firewalls. They filter packets at the network layer, determine whether session packets are legitimate and evaluate contents of packets at the application layer. They allow direct connection between client and host, alleviating the problem caused by the lack of transparency of application level gateways. They rely on algorithms to recognize and process application layer data instead of running application specific proxies. State-full multilayer inspection firewalls offer a high level of security, good performance and transparency to end users. They are expensive however, and due to their complexity are potentially less secure than simpler types of firewalls if not administered by highly competent personnel. (See Figure 8)

Figure 9: State-full Multilayer Inspection Firewall

clip_image004

No comments: